Balancing Data through Data Augmentation Improves the Generality of Transfer Learning for Diabetic Retinopathy Classification
نویسندگان
چکیده
The incidence of diabetes in Mauritius is amongst the highest world. Diabetic retinopathy (DR), a complication resulting from disease, can lead to blindness if not detected early. aim this work was investigate use transfer learning and data augmentation for classification fundus images into five different stages diabetic retinopathy. are No DR, Mild nonproliferative Moderate Severe DR Proliferative. To end, deep three pre-trained models, VGG16, ResNet50 DenseNet169, were used classify APTOS dataset. preliminary experiments resulted low training validation accuracies, hence, dataset augmented while ensuring balance between classes. This then train best models blind Mauritian test datum. We found that model produced results out also achieved very good accuracies class-4 images, severe cases, some unexpected results, with being classified as mild, therefore needs be further investigated.
منابع مشابه
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
data mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولVisual Data Augmentation through Learning
The rapid progress in machine learning methods has been empowered by i) huge datasets that have been collected and annotated, ii) improved engineering (e.g. data pre-processing/normalization). The existing datasets typically include several million samples, which constitutes their extension a colossal task. In addition, the state-ofthe-art data-driven methods demand a vast amount of data, hence...
متن کاملFuzzy Data Envelopment Analysis for Classification of Streaming Data
The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...
متن کاملFuzzy Data Envelopment Analysis for Classification of Streaming Data
The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app12115363